Comparative proteomic analysis of eggplant (Solanum melongena L.) heterostylous pistil development

نویسندگان

  • Yikui Wang
  • Ake Liu
  • Wenjia Li
  • Yaqing Jiang
  • Shiwei Song
  • Yan Li
  • Riyuan Chen
چکیده

Heterostyly is a common floral polymorphism, but the proteomic basis of this trait is still largely unexplored. In this study, self- and cross-pollination of L-morph and S-morph flowers and comparison of embryo sac development in eggplant (Solanum melongena L.) suggested that lower fruit set from S-morph flowers results from stigma-pollen incompatibility. To explore the molecular mechanism underlying heterostyly development, we conducted isobaric tags for relative and absolute quantification (iTRAQ) proteomic analysis of eggplant pistils for L- and S-morph flowers. A total of 5,259 distinct proteins were identified during heterostyly development. Compared S-morph flowers with L-morph, we discovered 57 and 184 differentially expressed proteins (DEPs) during flower development and maturity, respectively. Quantitative real time polymerase chain reactions were used for nine genes to verify DEPs from the iTRAQ approach. During flower development, DEPs were mainly involved in morphogenesis, biosynthetic processes, and metabolic pathways. At flower maturity, DEPs primarily participated in biosynthetic processes, metabolic pathways, and the formation of ribosomes and proteasomes. Additionally, some proteins associated with senescence and programmed cell death were found to be upregulated in S-morph pistils, which may lead to the lower fruit set in S-morph flowers. Although the exact roles of these related proteins are not yet known, this was the first attempt to use an iTRAQ approach to analyze proteomes of heterostylous eggplant flowers, and these results will provide insights into biochemical events taking place during the development of heterostyly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Draft Genome Sequence of Eggplant (Solanum melongena L.): the Representative Solanum Species Indigenous to the Old World

Unlike other important Solanaceae crops such as tomato, potato, chili pepper, and tobacco, all of which originated in South America and are cultivated worldwide, eggplant (Solanum melongena L.) is indigenous to the Old World and in this respect it is phylogenetically unique. To broaden our knowledge of the genomic nature of solanaceous plants further, we dissected the eggplant genome and built ...

متن کامل

Comprehensive Characterization of Simple Sequence Repeats in Eggplant (Solanum melongena L.) Genome and Construction of a Web Resource

Citation: Portis E, Lanteri S, Barchi L, Portis F, Valente L, Toppino L, Rotino GL and Acquadro A (2018) Comprehensive Characterization of Simple Sequence Repeats in Eggplant (Solanum melongena L.) Genome and Construction of a Web Resource. Front. Plant Sci. 9:401. doi: 10.3389/fpls.2018.00401 Comprehensive Characterization of Simple Sequence Repeats in Eggplant (Solanum melongena L.) Genome an...

متن کامل

Genome-wide identification and characterization of Dof transcription factors in eggplant (Solanum melongena L.)

Eggplant (Solanum melongena L.) is an important vegetable cultivated in Asia, Africa and southern Europe and, following tomato and pepper, ranks as the third most important solanaceous vegetable crop. The Dof (DNA-binding with one finger) family is a group of plant-specific transcription factors that play important roles in plant growth, development, and response to biotic and abiotic stresses....

متن کامل

Eggplant origins: Out of Africa, into the Orient

The eggplant (Solanum melongena L.), also known as aubergine or brinjal, has been cultivated for centuries in the Old World and is currently a crop species of global importance. Despite this, hypotheses of eggplant evolution have been fraught with controversy. Previous conclusions have relied solely on morphological characters or have been based on insufficient taxonomic sampling, leading to co...

متن کامل

Comparative transcriptome analysis provides insights into molecular mechanisms for parthenocarpic fruit development in eggplant (Solanum melongena L.)

Genetic control of parthenocarpy, a desirable trait in edible fruit with hard seeds, has been extensively studied. However, the molecular mechanism of parthenocarpic fruit development in eggplant (Solanum melongena L.) is still unclear. To provide insights into eggplant parthenocarpy, the transcriptomic profiles of a natural parthenocarpic (PP05) and two non-parthenocarpic (PnP05 and GnP05) egg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017